基于MRF模型的鲁棒FCM分割算法
【出 处】:《
计算机工程与科学
》
CSCD
2012年第34卷第10期 108-112页,共5页
【作 者】:
刘国英
[1] ;
钟珞
[2] ;
王爱民
[1]
【摘 要】
FLICM算法是一种基于FCM框架的有效的分割方法。然而,它对于强噪声图像的分割仍然不够准确。本文使用MRF模型的局部先验概率,对FLICM算法从两方面进行了改进。首先,在计算模糊因子时,使用先验概率对距离函数进行加权。改进的模糊因子考虑了更大范围的邻域约束,从而使算法受噪声的影响程度减弱。其次,在分割阶段,进一步使用局部先验概率对FLICM算法的隶属度进行加权。使用改进后的隶属度进行标记判决,使得每一标记的确定需要考虑邻域标记的影响,使分割结果的区域性更好。利用新算法对模拟影像和真实影像进行了分割实验,并与几个考虑空间信息约束的FCM分割算法进行了对比分析,结果证明该算法具有更强的抗噪性能。
相关热词搜索: